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Why Fundamental Physical Equations Are of
Second Order
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We use a deep mathematical result (namely, a minor modification of Kolmogorov’ s
solution to Hilbert’ s 13th problem) to explain why fundamental physical equations
are of second order. This same result explain why all these fundamental equations
naturally lead to nonsmooth solutions like singularities.

1. FORMULATION OF THE PROBLEM

Most physical phenomena are described in terms of partial differential

equations. These differential equations can be arbitrarily complicated. In

particular, they can be of high order; e.g., the equations of elasticity theory

(see, e.g., ref. 8) are of fourth order (i.e., involve derivatives of fourth

order). However, amazingly, these higher order equations only occur in the

description of nonfundamental phenomena, i.e., phenomena which (like elas-

ticity) can be reduced to more fundamental forces and fields, while fundamen-

tal physical equations, i.e., equations which describe the evolution of

fundamental fields and forces, are of (at most) second order. Newton’ s equa-

tions are of second order, and so are Maxwell’ s equations, which describe

electrodynamics, Einstein’ s equations, which describe general relativity,

SchroÈ dinger ’ s and Dirac’ s equations, which describe quantum physics, etc.

Why?
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2. TO ANSWER THIS QUESTION, WE REFORMULATE IT IN
PHYSICAL TERMS

What do mathematical terms ª first order,º ª second order,º etc., mean

physically?
The fact that a system is described by a differential equation of first

order means that the state s(t) of this system at a given moment t uniquely

determines the rate sÇ (t) with which the state changes, and thus uniquely

determines the state s(t 1 D t) of the system in the ª nextº moment of time

t 1 D t. In other words, the state s(t 1 D t) is a function of a state at the

previous moment of time: s(t 1 D t) 5 f (s(t)). Therefore, to describe the
evolution of a system which is described by first-order differential equations,

it is sufficient to have a function of one variable which describes how the

state changes.

If a system is described by differential equations of second order, then

it is not enough to know the initial state s(t) to predict the evolution of a

system [i.e., to predict the next state s(t 1 D t)]; in addition to the state s(t),
we must also know the previous value of the rate sÇ(t) with which the state

changed. This rate is, from a strict mathematical viewpoint, a limit of the

ratio [s(t) 2 s(t 2 D t)]/ D t when D t ® 0. From the physical ( practical)
viewpoint, this ª limitº means, crudely speaking, that the rate can be defined

(within an arbitrary accuracy) as the ratio [s(t) 2 s(t 2 D t)]/ D t for a sufficiently

small D t. Therefore, for systems which are described by second-order dif-
ferential equations, to predict s(t 1 D t), we must know s(t) and the ratio

[s(t) 2 s(t 2 D t)]/ D t. Knowing s(t) and the ratio is equivalent to knowing

s(t) and s(t 2 D t). In other words, for such systems, to predict the state of

the system in the next moment of time, we must know the state of this system

in two previous moments of time: s(t 1 D t) 5 f (s(t), s(t 2 D t)). Therefore,
to describe the evolution of a system which is described by second-order

differential equations, it is sufficient to have a function of two variables

which describes how the state changes.

Similarly, to describe the evolution of a system which is described by

third-order differential equations, it is sufficient to have a function of three
variables which describes how the state changes, and, in general, to describe
the evolution of a system which is described by kth-order differential equa-

tions, it is sufficient to have a function of k variables which describes how

the state changes:

s(t 1 D t) 5 f (s(t), s(t 2 D t), . . . , s(t 2 (k 2 1) ? D t))

Now we are ready to reformulate the above physical phenomenon in

precise mathematical terms. The above phenomenon is as follows: Every
time we have a process which is described by kth-order differential equations,
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with k $ 3, this process is not fundamental, i.e., it can be decomposed into
several more elementary processes each of which is described by equations
of first or second order. We have shown that ª a process is described by kth-
order differential equationsº means that its evolution is described by a function

of k state variables. Therefore, the above phenomenon can be reformulated

as follows: Every time we have a physical process whose evolution is described
by a function of three or more variables, this process is not fundamental ,
i.e., it can be decomposed into more elementary processes the evolution of
each of which is described by a function of one or two variables.

Explanation. We will explain this phenomenon by proving that it is

actually a general feature of functions of three or more variables. Namely,

we will prove the following result:

Definition. Let m be a positive integer.

x By a state space, we mean a set S 5 Rm of all m-tuples s 5 (s1, . . . , sm).

x By an area A in a state space, we mean a box A 5 [a1, b1] 3 . . . 3
[am , bm], i.e., a set of all states s 5 (s1, . . . , sm) for which a1 # s1 # b1,

. . . , am # sm # bm.

x By a state function of k variables, we mean a function f : Ak ® S,
i.e., a function which transforms every k-tuple of states (s(1), . . . , s(k)) (each

of which belongs to an area A) into a new states s 5 f (s(1), . . . , s(k)).

Theorem. Every continuous state function of three or more variables

can be represented as a composition of continuous state functions of one or

two variables.

Proof. For m 5 1, this result was proven by Kolmogorov (5) as a solution

to the conjecture of Hilbert, formulated as the 13th of the 22 problems that

Hilbert proposed in 1900 as a challenge to 20th century mathematics.(4)

This problem can be traced to the Babylonians, who found (see, e.g.,

ref. 1) that the solutions x of the quadratic equation ax2 1 bx 1 c 5 0
(viewed as a function of three variables a, b, and c) can be represented as

superpositions of functions of one and two variables, namely, arithmetic

operations and square roots. Much later, similar results were obtained for

functions of five variables a, b, c, d, e that represent the solution of the

quartic equation ax4 1 bx3 1 cx2 1 dx 1 e 5 0. But Galois proved in 1830

that for higher order equations, we cannot have such a representation. This
negative result led Hilbert to conjecture that not all functions of several

variables can be represented by functions of two or fewer variables. Hilbert’ s

conjecture was refuted by Kolmogorov (see, e.g., ref. 11, Chapter 11) and

his student V. Arnold.
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It is worth mentioning that Kolmogorov’ s result is not only of theoretical

value: it has been used to speed up actual computations (see, e.g., refs. 3, 2,

6, 7, 13, and 12).
Based on the case m 5 1, we can now prove the theorem for all m, by

using the following argument (its idea is similar to ref. 14). Suppose that we

have a state function s 5 f (s(1), . . . , s(k)) of k state variables s(1) 5
(s(1)

1 , . . . , s(1)
m ), . . . , s(k) 5 (s(k)

1 , . . . , s(k)
m ). For each input (s(1), . . . , s(k)), the

value s 5 f (s(1), . . . , s(k)) of this function is a state f (s(1), . . . , s(k)) 5
( f1(s

(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k))), where by fi (s
(1), . . . , s(k)) we denote

the ith component of the state s 5 f (s(1), . . . , s(k)). Therefore, each state-

valued function f : Ak ® S 5 Rm can be represented as m real-valued functions
fi: Ak ® R, 1 # i # m.

Each of these functions fi: Ak ® R maps k states (i.e., k 3 m components)

into a real number. Therefore, each of these functions can be represented as

a real-valued function of k 3 m real variables s(1)
1 , . . . , s(1)

m , . . . , s(k)
1 ,

. . . , s(k)
m . Each of these m functions fi can be represented (due to Kolmogorov’ s

theorem) as a composition of functions of one and two variables. So, to
represent the original state function of k variables as a composition of state

functions of one or two variables, we can do the following:

x First, we apply, to each input state s( j) 5 (s( j)
1 , . . . , s( j)

m ), m functions

p 1(s), . . . , p m(s) of one state variable which transform a state s 5 (s1, . . . , sm)

into corresponding ª degenerateº states p 1(s) 5 (s1, . . . , s1), . . . , p i (s) 5
(si , . . . , si), . . . , p m(s) 5 (sm , . . . , sm). When we apply these m functions

to k input states, we get m 3 k degenerate states p i (s
( j)) 5 (s( j)

i , . . . , s( j)
i ), for

all i from 1 to m and for all j from 1 to k.

x Next, we follow the operations from Kolmogorov’ s theorem with these

degenerate states, and get the ª degenerateº -valued functions F1(s
(1), . . . , s(k))

5 ( f1(s
(1), . . . , s(k)), . . . , f1(s

(1), . . . , s(k))), . . . , Fm(s(1), . . . , s(k)) 5
( fm(s(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k))), as the desired compositions of state

functions of one or two variables.

x Finally, we use combination state functions C2(s, s8),. . . ,Cm(s, s8) to

combine the functions F1, . . . , Fm into a single state function f. Namely,

these functions work as follows:

C2((s1, . . .), (s81, s82, . . . , s8m)) 5 (s1, s82, . . . , s8m)

. . .

Cj ((s1, . . . , sj 2 1, sj , . . .), (s81, . . . , s8j 2 1, s8j , . . .)) 5

(s1, . . . , sj 2 1, s8j , . . . , s8m)

. . .
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Cm((s1, . . . , sm 2 1, sm), (s81, . . . , s8m 2 1, s8m)) 5 (s1, . . . , sm 2 1, s8m)

We apply these combination functions to the values produced by the

functions F1, . . . , Fm , to get the results I2 5 C2(F1, F2), I3 5 C3(F2, I2), . . . ,

Ij 5 Cj (Fj 2 1, Ij), . . . . As a result, we get

I2 5 C2(F1, F2) 5

( f1(s
(1), . . . , s(k)), f2(s

(1), . . . , s(k)), . . . , f2(s
(1), . . . , s(k)))

I3 5 C3(I2, F3) 5

( f1(s
(1), . . . , s(k)), f2(s

(1), . . . , s(k)), f3(s
(1), . . . , s(k)), . . . , f3(s

(1), . . . , s(k)))

. . .

Ij 5 Cj(Ij 2 1, Fj) 5

( f1(s
(1), . . . , s(k)), . . . , fj (s

(1), . . . , s(k)), . . . , fj (s
(1), . . . , s(k)))

and finally,

Im 5 Cm(Im 2 1,Fm)

5 ( f1(s
(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k)))

5 f (s(1), . . . , s(k))

Thus, the function f (s(1)), . . . , s(k)) has been represented as a composition of

state functions of one or two variables. The theorem is proven.

3. AN INTERESTING SIDE RESULT: NONSMOOTHNESS OF
FUNDAMENTAL PHENOMENA

In the above explanation, we used the result that every continuous

function of several varuables can be represented as a composition of functions

of one or two variables. A natural next question is: If the function of several
variables has a certain property (e.g., it is smooth), can we represent it as a

composition of functions of one or two variables which have the same property

(i.e., are also smooth)? It turns out (see, e.g., refs. 11 and 15) that for a

smooth function, the answer to this question is no: there exist smooth functions

which cannot be represented as a composition of smooth functions of

fewer variables.
In other words, if we represent functions of many variables (correspond-

ing to nonfundamental phenomena) as a composition of functions of one or

two variables (which correspond to fundamental processes), then in some

cases, these functions of one or two variables which correspond to fundamen-
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tal processes cannot be everywhere smooth. This result provides a general
mathematical explanation of why in different areas of fundamental physics
nonsmoothness appears: infinite proper energy and other divergencies in
electrodynamics, singularities in general relativity (see, e.g., ref. 9), ª quantum

jumpsº in quantum mechanics (or, to be more precise, in quantum measure-

ment; see, e.g., ref. 10), etc.
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